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Abstract — In this paper we discuss the nature of our overall enterprise to create ontologies in the product and service knowledge space for Business-to-Business (B2B) electronic commerce. We describe one crucial problem: the mapping problem, i.e., mapping among ontologies, taxonomies, and classification systems, some of which are more semantically sound and coherent than others. This problem we consider to be in need of a sustained research program if tenable solutions are to be found, since the lack of a solution will preclude widespread adoption of ontologies by the commercial world. Finally, we summarize the general issues we faced and indicate prospective future research.

Categories & Descriptors — I.2.4 [Artificial Intelligence]: Knowledge Representation Formalisms and Methods – Predicate logic, Representation languages, Representations (procedural and rule-based), Semantic networks.
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1. Introduction

In this paper we discuss the nature of our overall enterprise as ontologists and domain experts working to create ontologies in the product and service knowledge space for B2B electronic commerce that included domains (lower ontology), a generic upper ontology adapted from the Cyc upper model, (http://www.cyc.com/tech.html) and shared middle ontologies.  We describe one crucial problem: mapping, i.e., mapping among ontologies, taxonomies, and classification systems, some of which are more semantically sound and coherent than others. We consider this problem to be in need of a sustained research program, since the lack of a solution will preclude widespread adoption of ontologies by the commercial world. 

The structure of this paper is the following. In Section 2 we describe the B2B enterprise and the use of ontologies to facilitate this enterprise. In Section 3 we highlight the mapping problem. Finally, in Section 4 we summarize the general issues we faced and indicate prospective future research.

2. The Nature of the B2B Enterprise 

B2B electronic commerce is everything that land commerce is, plus more: automated support for information and transaction flow and for vertical and horizontal commercial interoperability.  B2B electronic commerce includes the following: multiple marketplace platforms on the Internet that support multiple trading models (auctions, reverse auctions, exchanges, Request-For-Proposal/Request-For-Quote (RFP/RFQ), bookstores, trading hubs, etc.) for and by commercial organizations, providing rich information content on products and services for both buyers and sellers (catalogs, product guides, market and domain editorial content, news, advertising) and support for buying nd selling, financing, privacy/security, payment processing, order management, profiling/personalization, product configuration, planning/scheduling and forecasting, product life cycle and inventory management, business processes, workflow, and rules, logistics, distribution, and delivery.  

B2B e-commerce needs ontologies. First, there is an informational need: because the ontology is a structured conceptual model of the e-commerce vertical domain (and sometimes, quasi-horizontal domains too), it supports parameter/property-based search and navigation using product and service knowledge by prospective buyers to discover what to buy, and subsequently to determine pricing and availability. In this case, the relatively static knowledge of the ontology maps to the relatively dynamic data of the vendors.  Furthermore, an ontology can model not only commodities, but also agents, i.e., buyers and sellers, both human and artificial. By employing user role knowledge (sometimes called user profiling or personalization) to assist the search process, queries can be customized to a user’s known functions and interests, possibly based on previous interaction with that user.

E-commerce also needs ontologies for transactional purposes: knowledge of a company’s organizational structure, workflow, processes, and products/services can be used to actually assist in buying and selling directly.
The ontologies were built to support the representation requirements, as opposed to the presentation requirements of the intended applications, all of which presumed some form of classification of products and services.  Classification systems  are typically  ad hoc, inconsistent, and not integrated, with little association between classification systems. Representation was the underlying structure and codification of the product and service knowledge space to be supplied by the eventually developed ontologies. This representation would be semantically sound, consistent (though obviously always incomplete because additional refinements could always be made), controlled, modular, reusable, and provide some support for application presentation needs. Presentation was largely the responsibility of the application, though the ontologies would offer some support. It is in the mapping among ontologies and classification systems, and the mapping among representation categories and those presentation categories preferred by particular applications, that technical difficulties lie. This mapping problem we address in the next section.

3. Mapping Ontologies to Ontologies, Taxonomies and Applications

In this section we discuss in detail one crucial issue we faced in developing ontologies to support B2B e-commerce: the problem of mapping reference ontologies with well-defined semantics to other ontologies, taxonomies, and standards-based classification systems that are less semantically sound and coherent.

Ideally, ontologies provide a semantic infrastructure that can be used for all applications.  To provide this semantic framework across the applications/data of an e-commerce business (independently developed and without commitment to ontological infrastructure), existing and planned information resources must be connected to the ontology framework.  We term this connection a “mapping.”  A mapping is a many-to-many relationship between source data and an ontology.  Sources for mapping could be another ontology, some standard taxonomy, or an application’s data structures.
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Figure 1.  A Simple, Informal Application Taxonomy (left) Mapped to an Ontology (right)

Figure 1 illustrates a mapping. Solid lines indicate a well-defined subclass relation in the ontology (right); in the taxonomy (left) the solid line represents a parent-child relation, with ill-defined semantics.  The heavy, dotted lines without arrows represent other ontological relations.  The thin, double-arrowed lines depict a mapping between nodes in the ontology and data structures in the application taxonomy.

On the left, an e-commerce application uses a taxonomy with ill-defined semantics to represent some information.  For example, node Z could represent some industrial process.  Node Y could represent products resulting from this process, X the equipment used in the process, and W the employees involved in the process.  The relation between nodes is an undefined parent-child relation with no inheritance; the information is used in the application to group these related concepts together.   On the right, an ontology represents much of the same information, but with a well-defined semantics for each relation.  For example, nodes B and C could represent products resulting from the industrial process A.  The relation between A and these nodes is not subclass; it might be “generated-from,” assuming the semantics of this relation was defined.  Because B and C are products, they are subclasses of a more general product node (M), perhaps in a middle or upper ontology.  Unlike the application taxonomy, a different, well-defined relation relates A to D, and so on.

One criticism of this scenario is that the application taxonomy is deficient.  In other words, what is needed is not a mapping, but a clearly defined semantics in the application taxonomy.  With such a definition, some automated merging process could (conceivably) merge the nodes.  However, practically, such merging was not possible. 

Mappings provide an intermediate solution to this problem.  Once Z is mapped to the ontology, other applications can recognize that Z is similar to A.    This example is only one of several different kinds of mapping we encountered.   The following sections explore three different kinds of mappings: taxonomic-standard-to-ontology, application-to-ontology, and ontology-to-ontology.  We consider the different types of mapping separately because the more well defined the semantics of the source to be mapped to the ontology, the more straightforward the mapping process and the more semantically rich and powerful the resulting mapping. 

3.1 Taxonomic standard to ontology mapping

An e-commerce company will use open standards whenever possible simply to facilitate interaction with other companies.  A case in point is our use of the UNSPSC. The UNSPSC hierarchy includes some 11,000 codes representing a taxonomic structure given by “segment,” “family,” “class,” and “commodity.”  For example, Segment 32 is “Electronic Components and Supplies,” Family 3210 is “Printed circuits and integrated circuits and microassemblies.” 

When we began, no attributes were associated with nodes in the UNSPSC, and we had to develop attributes ourselves. Furthermore, we needed substructure below the lowest level of the UNSPSC (commodity level). Because the UNSPSC was originally developed, not from a buyer or seller’s perspective, but to permit financial rollup for accounting purposes, the taxonomy was not adequately defined semantically for our purposes.  We did, however, want to map to the standard, to support companies that adhered to it.  To satisfy our more complex needs, we developed Nebenstruktur (shadow structure) that linked the more semantically well-defined ontology (developed from an industry supplier and buyer perspective) to the UNSPSC (Figure 2). We provided these links by overloading subclass inheritance, thus allowing the inspection or extraction of a purely UNSPSC-based taxonomy with attached attributes and substructure.

.
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Figure 2. UNSPSC Mapped to Electronics Domain Ontology

3.2 Application to ontology mapping

Any application data may need to be mapped to an ontology.  Before considering how to approach such mappings, the goals for creating the mappings and their use should be identified. 

1. Representational adequacy. A mapping solution should represent the mapping between the source and ontology completely and consistently.  Completeness implies that any information in the application that could be queried by an external application has been mapped.  Consistency implies that the most appropriate node in the ontology is mapped to the external structure.  In some cases, this requirement will mean creating new ontology nodes.  Thus, there is a tension between completeness and consistency that must be resolved by the methodology for mapping.

2. Heuristic adequacy. A mapping solution must be relatively easy to create and convenient to access. Because the mappings will be dynamic (application data and ontologies will be changing over time), an individual mapping should not require significant computation or user interaction.

3. Represent once. A mapping solution should not introduce duplication in representation.  

4. Knowledge engineering cost/Supports automation. A mapping solution should not increase the workload or day-to-day activities of ontologists and domain experts.  Thus, the solution should provide support to automate mappings. Because not all mappings can be automated, an infrastructure for mapping should be developed that will allow non-domain/non-ontology experts to create mappings that cannot be done automatically.

Given these goals, how should the mappings between an application and an ontology be implemented?  The following outlines three possibilities.  

· Mapping table. A simple way to establish a mapping would be to create a table (e.g., in a database) in which each row of the table indicates an association between some application data structure and the ontology.  The table could support many-to-many mappings by duplicating either an application structure or an ontology node in some rows.  Completeness can be easily determined by ensuring that each application structure in the table is mapped to at least one ontology node.

· Model of application. Figure 3 shows an example of building a model of the application in an ontology.  All ontology-relevant application structures are included in the ontology model.   A mapping relation is introduced that defines the association between an ontology node and nodes in the application model.  In this approach, there is an ontological concept such as “claw hammer,” an application-specific concept “hammer as used in carpenter’s catalog XYZ,” and a mapping relation that conveys the information that the “hammer as used in Catalog XYZ” corresponds to the “claw hammer” node in the ontology.  We considered using subclass to represent the relations in the application ontology because the application concepts in the application taxonomy (rather than in the ontology proper) are subclasses in the context of the application. That is, “hammer” in the XZC Catalog might be a direct subclass of “tool” in the same catalog, even though in ontological space there is much more “distance” between these concepts.

· Application mapped within the ontology. Figure 4 illustrates another mapping solution.  In this case, an application-specific mapping relation relates nodes in the ontology to their use in an application.  The “claw hammer” node in the ontology is now not only related to other nodes in the domain ontology via domain relations (e.g., “claw hammer” is a subclass of “hammer”) but also related to nodes via application relations (“claw hammer is a type of product in carpenter catalog XYC”).

A complete analysis of these approaches is beyond the scope of this paper, and would include notions of ontology mapping/merging and context. Although our efforts were interrupted before we could empirically explore these possibilities, it was clear that no single approach fully met all of our requirements.  The mapping table solution was simple to implement, but lacked powerful connections to the ontology that could potentially help automate the maintenance of mappings as the ontologies and applications changed.  The increasing power of the other two approaches placed demands on the representation of the mappings: because the ontologies themselves were being changed, ontologists needed to be closely involved in the representation of the models and mappings, in addition to defining mapping relations.

Further, we lacked requirements that could tell us how powerful the resulting mappings needed to be.  For simple interlingua use of the mappings, the mapping table appeared to be a sufficient solution.  The other approaches have higher initial costs but perhaps could be maintained more easily and certainly would provide a more powerful substrate for reasoning, because both the structure of the application as well as its data is represented (explicitly in the model approach, implicitly in the internal approach).  Our solution in the short-term was to pursue all of these possibilities to determine the actual consequences of each.  We believe the mapping problem is a significant challenge that requires additional research before a conclusive determination can be made as to the best approach for a given source.

	
[image: image3.wmf] 


	
[image: image4.wmf] 



	Figure 3.  A Model of an Application in the Ontology
	Figure 4.  Mapping an Application in the Ontology


3.3 Context and mapping

We have used mappings between ontologies to solve some practical problems we encountered.  One such problem is that of representing contexts.

A product ontology of one industry may “overlap” with that of another industry in a B2B e-commerce marketplace.  A class in one ontology may conceptually occur in another as well.  Every such ontology in which the class occurs represents a different context for the concept.  Thus, we have the problem of expressing the relationship between the different classes in different ontologies that actually represent the same concept in different contexts. Although we considered other solutions as well, one particular solution uses mappings between ontologies.

Consider the set of Word Processors classes. A class that represents the concept Word Processors is found in Ontology 1, Ontology 2  and Ontology 3 .  Thus, three classes in three ontologies all represent the same concept.  Without loss of generality, assume that all three classes are labeled “Word Processors.” At first glance, this phenomenon suggests that one may need to eliminate the redundancy by removing all but one Word Processors class.  After all, one may argue, several classes for a single concept defies the reusability principle of representing a concept only once.  Upon closer examination, however, one discovers that the situation is not so simple.  Suppose one eliminated all but one Word Processors class, say in Ontology 3.  Then Ontology 1 and Ontology 2 would be missing a Word Processors class.  How can the idea that the concept Word Processors belongs in Ontology 1 and Ontology 2 be conveyed?  How can one then represent any subspecies of the concept Word Processors in Ontology 1 and Ontology 2?  The addition of any such assertion on the Word Processors class in Ontology 3 would be irrelevant to Ontology 3 and irrelevant to the class Word Processors as it relates to Ontology 3.

An approach using mapping between ontologies solves the context problem without eliminating the seemingly redundant classes.  A major advantage of this approach is that it requires no modification to the ontology of each industry domain.  This approach promotes modularity for the ontologies in that they remain stand-alone for their respective industries. Another advantage to this approach is that it relieves the domain expert, who is responsible for building and maintaining a given industry’s ontology, from having to deal with relationships of its classes to other ontologies: at least the tasks would be separate.

The approach is defined as follows.  First, we let ontologies remain as the domain experts have built them.  We then define mappings between relevant portions of two ontologies to express the relationship between the occurrences of the same concept in different contexts.  By mapping from a given ontology to another ontology, we mean a function that takes every class in the source (“domain”) subontology of ontology A to classes in the target (“range”) subontology of ontology B.  By “subontology” we mean a subset of classes (with all their instances and relations) in a given ontology that is closed under all relations, i.e. a subset that is itself an ontology (see Figure 5).  
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Figure 5.  A Relations- (or rules-) Preserving Mapping f: M(N.

Moreover, such a mapping should preserve a defined set of relations and rules.  For example, the mapping can be defined to preserve directed paths (any two classes in its domain connected by a directed path to two classes connected by a directed path – thus preserving direction) or roots (the domain and range subontologies are trees of classes with common roots and the mapping takes the one to the other). Mappings express their semantics by this defined set of preserved relations and rules.  In particular, mappings that associate a class in one context to its counterpart in another define their set appropriately.  Under such a mapping the class Word Processors in Ontology 3 is mapped to its counterpart in Ontology 1. Under another such mapping the class Word Processors in Ontology 3 is mapped to its counterpart in Ontology 2.

Figure 6 shows a temporary implementation of path- and slot- preserving mappings.  This implementation depends on semantically overloading the subclass-of relation between ontologies.  At the time of this implementation, neither metaclasses nor rules were available in our ontology editor.  Class labels follow a convention that would facilitate a subsequent transformation of the temporary implementation into a more formal representation.
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Figure 6. An Implementation of a Relation-Preserving Mapping: an Example.

Moreover, preservation of rules and relations were to be enforced by human user policies until the ontology editor tool automated it: e.g., never link a descendant to an ancestor, always link root to root.  Table 1 displays the beginning, intermediate, and advanced implementations of Figure 5.

	Table 1.  An Implementation Plan for Figure 5 Using Ontology Editor

	Version1 implementation: Overload subclass-of.  User enforces relation-preserving properties according to documentation.



	Version2 implementation (when meta-classes are available):
Step 1.  Define metaclass called "Dom( f )" by Dom( f ) = { ITRoot, WordP } in Ontology 3.  (This is M in diagram.)  ( Note that "Dom( f )" is merely a label in this discussion.  No function Dom( . ) need be defined.)

Step 2.  Define metaclass called "Ran( f )" by Ran( f ) = { ITRoot_Im_f, WordP_Im_f } in Ontology 2.  (This is N in diagram.)

Step 3.  Define ontology called "View( Ontology 3 , Ontology 1 )" that uses both Ontology 3 and Ontology 1.  Then, create a slot called "f" with domain Dom( f ) and range Ran( f ).

Define f by f = { (Ontology 3Root, Ontology 3Root_Im_f), (WordP, WordP_Im_f) }, i.e. attach the slot f to the domain class Dom( f ), and edit each instance of Dom( f ) by entering the target value from Ran( f).  For example, edit the instance Ontology 3Root of Dom( f ) by entering the value Ontology 3Root_Im_f.

	Version3 implementation (when rules are available):
Step 4.  Define rules.

For example, define Rule1 on f:  If (X, Y) and (X, Z) are in f, then Y = Z.  (I.e. the relation f is a function). For example, define Rule2 on f:  If X * Y in A, then f(X) * f(Y) in B , where * denotes some binary relation on A and (by abuse of notation) the similarly defined binary relation on B.


Defining a relation-preserving function between ontologies solves the problem of contexts.  It does not demand a global perspective of all ontologies in the knowledge base.  Instead, this approach allows relationships to be expressed between local, i.e. context-based, classes. Thus, this constructivist bottom-up approach allows for gluing of ontologies wherever needed.  After all, a class represents a concept in some given context. The global concept emerges as a result of the mappings.  This approach in the spirit of [10, 4] steps away from the less maintainable and thus less scalable monolithic hierarchy.

4. Conclusions and Future Research

We have discussed in this paper the development of ontologies in the product and service space for B2B e-commerce. What we have termed the ontology mapping problem we consider to be in need of a sustained research program if tenable solutions are to be found, since the lack of a solution will preclude widespread adoption of ontologies by the commercial world. It was the greatest technical problem we faced. We believe this recapitulation of our experience developing an e-commerce application of ontological engineering to be of interest to the technical community because it highlights the difficult issues of adoption of ontological engineering by the commercial world.
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